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ABSTRACT

We define here a certain class of procedures (a.a.c.c.p.) for constructing
real valued cocycles over irrational rotations. Each such procedure is
realizable over a residual set of possible rotations, and we prove that each
such cocycle is cohomologous to a real analytic cocycle. The procedure
in Section 3 of [10] is seen to be of this type and hence not only is
cohomologous to C'*° as is shown there, but is actually cohomologous to
a real analytic cocycle. We also show that following the method of [6] a
procedure can be given to obtain rank-1 Anzai skew products of mixed
spectral type that are real analytic.
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Introduction

In [10] the authors described a construction of two weakly isomorphic but not
isomorphic Anzai skew products with C'°-cocycles. This construction has two
features not directly related to the problem of weak isomorphism. First, it is
not simply one example that is constructed, but rather a class of examples over
a dense G of admissible base rotations. As was discussed there, it is necessary
to restrict the rotation number a to be very well approximable by rationals.
But moreover it is sufficient, as such very good approximations, that is to say
large terms ay in the continued fraction expansion of & = [0: aj,a2,...] imply
the existence of special Rokhlin towers for T, whose sets are intervals. The
construction was carried out on a series of such towers. More precisely, the ability
to carry out the construction depended simply on the existence in the continued
fraction expansion of certain a, > B(ay,as,...,a,—1) for some rapidly growing
function B of the previous terms of the expansion.

Second, for such an a the construction occurred in two steps. In the first step
a series of coboundaries ¢y, were constructed. The ¢ were step functions, taking
on constant values on the levels of a certain Rokhlin tower, and the cocycle ¢ =
> e, ¢k Was shown to have the desired property. In the second step one examines
the form of the ¢ and notices that they can be modified by coboundaries to fi
which are smooth cocycles. This remark may seem foolish as-of course ¢y is

cohomologous to zero. To explain this point we use the language of “fixing sets”.

Definition 1: Let (X, B, u,T) be a dynamical system and f: X — R be mea-
surable. We say that f has an “(e, M)-fixing set” S if u(S) > 1 —¢ and whenever
z,T™{z) € S, then

1f® (@)l < M,

where f")(z) = f(z)+---+ f(T" " 'z), n > 1.

THEOREM 1 ([13]): Assume that T is ergodic. Then a measurable function f is
a coboundary if and only if it has an (¢, M)-fixing set for some 0 < ¢ < 1 and
0< M < oo.

Now in our constructions ¢ is a coboundary which has an (e, 0)-fixing set for
some &, but the £, — 1, and in fact ¢ will not be a coboundary. On the other
hand, our smooth coboundaries fi will be such that o) — fx has an (¢/2%, M/2k)-
fixing set Sy for some 0 < ¢ < 1 and 0 < M < oco. But then Y 2>, (¢k — fi)
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has an (e, M)-fixing set (=, Sk) and is a coboundary. Our problem reduces to
forcing f = Y 4o fx to be smooth.

These observations concerning the construction in [10] make it clear that the
second part, that of smoothing the cocycle, is only related to certain properties
of the construction of the sequence ;. We here abstract these properties in the
concept of an “almost analytic cocycle construction procedure”.

In [10] the cocycle is only smoothed to C*°. This left the obvious question if
one could actually obtain real analytic examples. In the context of R*-valued co-
cycles giving rise to weakly mixing special flows, such real-analytic constructions
are quite old and known. We will describe such a construction as an a.a.c.c.p.
Soon after completing [10] we realized that the necessary computations for the
real analytic construction are possible and actually easier than C'*°, and so we
work here in this context.

It will be a simple observation that on a perhaps smaller residual set of a’s the
construction in [10] is an a.a.c.c.p. Hence this class of examples is real analytic. In
Section 2 we will modify the method and computations of [6] to give an example
of an a.a.c.c.p. that constructs rank-1 automorphism of mixed spectral type.

The second author would like to thank A. Iwanik and T. Downarowicz for
fruitful discussions concerning the proof of Theorem 3.

1. Notation

We will identify the circle S! with X = [0,1) (mod 1). Therefore, real functions
defined on the circle will be identified with periodic-one functions defined on R.
Let p denote Lebesgue measure on X. Assume that T: X — X is an irrational
rotation, Tz = £ + o (mod 1), z € X. Let

a = [0;01,(12,. . ]

be the continued fraction expansion of a. The positive integers a,, are said to be
the partial quotients of a. Put

@0=1q1=01, ¢as1 =418 +qn_1 P0=0,p1 =1, Pnyi = Gny1Pn+Pn-1.

The rationals p, /¢, are called the convergents of o and the inequality

1
Indn+1

o - —
In

| Pn<
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holds. The following formula

qn+1||qna” + ¢In||<1n+106|| =1

holds true. Here ||t|| is the distance of a real number ¢ from the set of integers.
By {t} we denote the fractional part of i.

Hence, from the continued fraction expansion of a we obtain, for each n, two
Rokhlin towers £,, €, whose union coincides with the whole circle. For n even

tn = {0,{¢a0}), T[0, {gne}), ..., T3 ¥a-0)710, {g,a})},

Zn = {[{q"+la}1 1),.-, Tq"_l[{4n+1a}7 1)}

Given a subsequence {n} of natural numbers we will denote
I = [0, {azn, +192n, 0}), th = T~ Dazmy (0, {g2n.a}],

t=1,...,a2n,+1. Notice that

Q2np 41
L= |J Jk
t=1
and if Iy = |J¥| then
1
(1) < ———.
A2n4+192n,

We also have

lgzng 10l < —— < ——
2ny+1
et d2n4+1 Q20 +192n; ’

% 1-1 1
1o Yamern g0 L
q2n, q2n,
In particular,
. 1
(2) if agn,+1>1 then < |kl <
2 2ny q2n,

Let G be a locally compact abelian metric group with Haar measure m (the only
case considered here will be G = R or S! with Lebesgue measure). A measurable
function @: Zx X — G is called a cocycle if "*™)(z) = ™ (z)-7™)(T"(x)).
Any such is clearly of the form %™ (z) = H;‘;& o(Ti(z)), n >0, T(z) =
( J'=ln o(T(x)))"1, n < 0, where ¢(z) = P(1,z) is the “generator” of the
cocycle. Abusing language we will refer to ¢ as “the” cocycle although we will
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be referring to the cocycle it generates. A cocycle ¢ determines an automorphism
T, (called a G-extension of T) on (X x G, B, ji) by

T<P(1:1 g) = (T.’L‘, g ‘p(x))a

( B is the product o -algebra and i = uxm ). S!-extensions will be called Anzai
skew products. A cocycle ¢ is said to be a coboundary (or a G-coboundary
if we need to emphasize the role of G) if it is of the form

o(z) = f(Tz)/ f(2)

for a measurable function f: X — G. We say that two cocycles p,¢: X — G
are cohomologous if ¢/ is a coboundary.

2., What is an A.A.C.C.P. (“almost analytic cocycle construction
procedure”) ?

We begin by noticing some simple facts concerning real trigonometric polynomi-

als. Let Q(z) = Ef{:_ N bse2™** where b, = b_,, by # 0 be a real trigonometric

polynomial. The number N will be called the degree of Q). We will denote

IQllr = _max bl 1@l = sup [Q(a)]

Notice that ||Q(- +zo)||x = ||Q(-)]|  for each zp € R and ||Q|| enjoys the same
property.

LEMMA 1: Let Q. be real trigonometric polynomials with degrees Ny, k > 1. If
there exists A > 1 such that

o0
> AMH|QullF < +o0
k=1

then the function

f@) =Y Q@)
k=1
is real analytic.

Proof: Denote
Ni

Qk(l‘)= Z bgk)e%rism.

s=—N;



342 J. KWIATKOWSKI, M. LEMANCZYK AND D. RUDOLPH Isr. J. Math

Then we formally write

= $ S

8=—o0 k=1

where b{*) = 0 for |s] > Ni. We have

k k k
T B = Y vy 81+ s masgapy 168
=3 LYESY (AN
{k: Nk2|s|} 8 — {k: NkZISI}A k |le|}-)

< il AR

Therefore the Fourier coefficients of f tend to zero exponentially so f is real
analytic. 1

An a.a.c.c.p. is given by a collection of parameters as follows. We are given
a sequence { My} of natural numbers and an array {(dk,1,...,dk,m,)}, dii € R
satisfying for each k

M,
(3) Y dpi=0.
i=1

Denote Dy, = maxi<i<m, |dk,i|- Choose a sequence {ex} of positive real numbers

satisfying
(4) 3" VERMi < +oo,
k=1
(5) Zek <1,
k=1
(6) <=5 k=12
k Dzy I R

Finally, we are given A > 1 completing the parameters of the a.a.c.c.p.

We say that this a.a.c.c.p. is realized over an irrational number o with
continued fraction expansion [0;ay,as,...] if there exists a strictly increasing
sequence {ng} of natural numbers such that

N DiMillPellz 1

7 A

( ) a2n;,+1‘12nk 2k
and DellPLll

(8) Del|Pilloo < R,

A2n,+192n,;
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where {P:} is a sequence of “bump” real trigonometric polynomials, i.e.

() Jy Pe(t)dt =1,
(9) (i) P >0,

(ii) Pi(t) < eg for each t € (mx/2,1),
where the n;’s are chosen in such a way that

Ek

(10) 4Mme <

qon,
and Ny is the degree of Py. Finally, agn,+1 > 1 and
1 1
11 — < =7
( ) a2nk+IQan 2

Using the above parameters define a cocycle

Y= Z Pk
k=1
as follows. In view of (10), (11) (and (1), (2)), in the interval

I = [0, {a2n, +192n, })

we can choose wg 1, ..., Wk, M, to be consecutive pairwise disjoint intervals of the
same length contained between 7 and 27, such that each wy ; consists of, say, ex
consecutive subintervals JF, where ey is an odd number. Let J¢, , be the central
subinterval in wy ; and now define

dvi if z€JE
«.ok<x)={ ;

0 otherwise.

Note that the ¢}’s have disjoint supports so ¢ is well defined.
Let my; be determined by J¥ == Tm&:JF.

PROPOSITION 1: The set of a’s over which an a.a.c.c.p. is realized is a Gs and
dense subset of the circle.

Proof: In constructing ¢ we use only information relating parameters
[0;a1,...,02n,), Mk, Dk, k.

Now, the set { Mk, €k, gan, } determines an upper bound for our choice of 7 which
in turn determines our choice of P, which finally determines a lower bound for
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agn,+1 to satisfy (7)-(9) and (11). We can then choose an arbitrary ng4+1 and
put arbitrarily agn, +2, - - . , @2n, ., - Therefore density follows directly from the fact
that n; can be chosen arbitrarily and G5 from the fact that for each k > 1 the
set of a’s satisfying (7)-(9) and (11) is open. |

THEOREM 2: Suppose that for an irrational a an a.a.c.c.p. Is realized. Then
there exists an analytic cocycle f: 8 — R which is a-cohomologous to .

Proof: Denote
~ Mk
Pk(t) = lk de,rpk(t - mk,,a).
r=1

We are going to prove that the real function

P, (t) is analytic

(12) flt)=

gk

=
Il

1

and is cohomologous to . First notice that
|| Pl < leDieMi|| Pil| £-

Moreover the degree of Py is not bigger than the degree of P;. Therefore, by
Lemma 1 (with Q; = P), (7) and (1) it follows that (12) holds true. To show f
and ¢ cohomologous put

Mk q2nk—1
Sk = [0, 1) N U U T’wk,r.
r=1 i=0
Now,
M, ‘hnk—l
B(Sk) =1-— #(U U T'wi,yr) 21— 4AMinigan, 21— €k
r=1 1i=0

in view of (10). So, from Theorem 1, (4) and (5) it follows that it is enough to
show that

(13) if 2,TNz € Sk then |(¢r — Pe)™(z)| < 12My\/Ek.
Denote g = ¢ — I5k, he; = XJk T~k — 1 BT~ ™ki, We will estimate the sum

gk (z) + g(Tz) + - -+ + gu(TV " 1)|
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by 4M} sub-sums of the form

Li-1
> di b (T'y)),
i=0
where
(14) 0 < Lj < agni+192n4»
neither y nor TXi=1y are in the set
19 { Sy = Uy ™ Thww

and moreover if i; and i, are the smallest positive integers such that y € T% J¥
and TLi—1ly € T% J¥ then
(16) 11 < tg.

Indeed, in our notation
M,
gk =Y dijhi;.
i=1

Since (3) holds and h ; = hi o T~™ki where hy = Xg+ = I Py, we have

M, N-1
(N) E Z di JhkT_m" d (1? + za)
j=1 i=0
mg j—'mk 1-—1

—Z( Y deghug(e i)

i=0

J/

I
N-1
+ dk’jhk’j(l‘ + ia) ) .

i=(N-1)—(m,m, —™Mk,;)

]

1
Now, Sy ; = Tm™+5=™x1 8, 1 and therefore for the sum I; we have (14) and (15)
with L; = my; — mk,1, y = z. Similarly, for appropriate L; and y we have (14)
and (15) for the sum I1;, j =1,..., Mg. However, it is not excluded that the set
{y,...,TLi "1y} is not entirely contained in £35,. If this happens then no more
than ggn, —1 + g2n, consecutive points from this set are outside 2,,. Hence by
dividing each sum I; (I;) into no more than two sums we get that | g,(cN)(:c)| can

be estimated by the sum of absolute values of no more than 4M; sums each of
which satisfies (14), (15) and (16).
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Let us take a sum of the form

N-1

Z di jhrj(x + i),

i=0
where z, TV=1(z) are not in S ; and (16) is satisfied. We divide this sum into
three sums ¥,, r = 1,2, 3, where the first sum is from 0 to Ny, where NV is the
smallest number such that 7V++1(z) is in S'k,j, if it exists, the second from N;+1
to Ny, where N is the biggest (but smaller than N) number such that T72(z)
is in S'k,j and finally the third one from Nz + 1 to N — 1. If N; does not exist
neither does Ny and the sum is just ;. Now, since P,T~™* is smaller than e
outside .S~‘k,j,

|21 + E3| S|21| + |23|

N1 Ny
= deijJfT_mj"‘ (ZIZ +ia) — de,jlkPkT_m"’k (x + za)'
i=0 =0
N-1 N-1
+ Z diix T~ Tk (z 4 ja) — Z di jlkPT™ "‘”(z+za)’
i=N2+1 1=Np+1
Ny N-1
=Y de kBT (@ i)+ Y di e P T ™ (4 2a)'
=0 i=Na+1

<Dglkasn, +192n,. €k < Drer < vEx by (6).

Finally
Nz N2
|2,] = Z di i X T~ (2 + dor) — Z di jlk PeT ™™ (x + ia)
i=N1+1 i=N1+1
Na
=1~ Y dk,jlkPkT_m""‘(x-i-ia)l
i=Np+1

= Z dk]lkPkT m"‘(:l:+’LO£) ko/ Pk(t dt‘
1—N1+1

< 3 Gl AT e 4 ia) - | nad+l [ R
i=N+1 Sk, 0,1)~Sj

<Di||Ptlloolk + Dier < 2¢/ek

in view of (6) and (8). We conclude that (13) holds true, so the proof is complete.
|
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3. Comments and applications

1. First notice that the method in Section 3 of [10] for constructing Anzai
skew products that are weakly isomorphic but not isomorphic are realized as an
a.a.c.c.p. Therefore not only a C*-construction as in [10] but an analytic example
of two diffeomorphisms (preserving Lebesgue measure on the two dimensional
torus) which are weakly isomorphic but not isomorphic can be carried out. Notice
also that in [10], a C*°-coboundary modification was possible only for an infinite
sums of step cocycles which were uniformly bounded. QOur new method omits
this difficulty and can be applied to unbounded cocycles.

By a simple trick on the 4-dimensional torus we can obtain positive entropy
analytic examples of weakly isomorphic transformations that are not isomorphic.
Indeed, let 77,73 be two zero entropy analytic diffeomorphisms on the 2-torus
that are weakly isomorphic but not isomorphic. Let S be an ergodic continuous
group automorphism on the 2-torus. Then measure-theoretically S is Bernoulli.
Obviously, T} X S and T3 x S are weakly isomorphic. They cannot be isomorphic
however since T; is the Pinsker algebra of T; x S, i = 1,2. This example would
be much more interesting if the systems were K. Our method seems incapable
of giving even mixing examples.

We recall that on the 2-dimensional torus all positive entropy smooth auto-
morphisms that are weakly isomorphic are in fact isomorphic.

2. Suppose that for certain parameters {My}, {ex}, A and {(dk,1,-..,dr,m,)},
Zfi"l dri; = 0 we have an irrational number a over which this a.a.c.c.p. is
realized. This means that the cocycle ¢ is cohomologous to f which is analytic.
Choose an integer p such that if we denote ® = ¢ +p, F = f + p then F > 0.
Consider now the special flow over the irrational rotation by a with the roof
function F. Such a flow is weakly mixing iff for no real number r # 0 can we
solve the functional equation

(17) exp(2mir F(z)) = ¢, (Tx)/cr(x),

where ¢,: S8 — S is measurable ([7]). Of course, if in (17) we replace F by ®
we obtain exactly the same functional equations to consider.

PROPOSITION 2: There exists an a.a.c.c.p. and an o over which it is realized so
that the special flow over rotation by a with the roof function F is weakly mixing.
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Hence there exists a special flow over an irrational rotation with an analytic roof
function which is weakly mixing.

In order to prove this proposition we will need a lemma whose proof appeared
in [10] (see Lemma 3 in [10]).

LEMMA 2: For an arbitrary a.a.c.c.p. and « over which it is realized and for any
k, the cocycle ¢ is constant on each interval T*(I), i = 1,...,qan, — 1. Moreover,
if we put by ; = ¢ | T*(Ix) then

Qany —

1
> bei=0.
i=1

Proof of Proposition 2: According to the definition of an a.a.c.c.p.
o|IF=eks, i=1,...,8m,41,

where for i = sk ;, j =1,..., My, we have er; = di, ; and zero for the remaining
values of 1.
In view of the above remarks all we need to show is that the functional equation

(18) exp(2mire(z)) = exp(—2mipr)c.(Tz)/cr(x)

has no measurable solution c,: S* — S! for any r € R {0} if the sequence
of parameters {(dk,1,...,dk, M, )} satisfies some additional properties. Below, we
will indicate one of a variety of such possibilities.

Select the intervals w3, ..., W, m, to be pairwise disjoint and moreover so
that there exists # > 0 with

4 .
(19) Ski+l — Skji 2 X/.f—;a%"“’ 1=0,..., My,

where Sk 0 = 1, Sk, M, +1 = G2n,+1. Partition N into

> ]
(20) N= U N; where each N, is infinite.
t=1

Let Q = {B:: t = 1,2,...} be the set of all rationals. Select {(dx,1,...,dr,nm.)}
so that there exists an 1 > 0 with

21 |e27ﬂ'ﬁzdk.j - e%iﬂ:dh,jﬂ' >
(21) foreachke N;andj=1,...,M;—1forallt.
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Suppose now that there exists r # 0 such that (18) can be solved. Take a
positive number é < 17/16. In view of the measurability of c,, there exists ko such
that for all k¥ > kg, there exist at least (1 — §)qzn, “good” intervals of the form
T'Ix, i = 1,...,g2n, — 1 on which the values of function c, are contained in a
ball of radius é except for a subset of measure Tli_l' Hence, there must exist an ig
such that for at least (1 — 26)agn, +1 “good” intervals of £ contained in T (I})
the values of function ¢, are within 26 from a common value, say a, except for
6/ JF | of the mass of each such interval. Let A = T JE denote a “good”
interval. Consider an arbitrary “good” interval which is on the right of A. It is
of the form T™%~x A, for some m.

From the above and (18), we can find an x € A satisfying the following:
ler(z) — a| < 26,
ler (T 8rez) — a| < 26

and
Cr (quZ‘n.k .’L‘)
e ()
(actually the set of such points have positive measure). Consequently

(627rir<p)(mq2nk)(x) — e—27ri1‘p'qun,c

I(e21rirga)(mq2,.k)($) _ e—21rirpmq2nk| < 4.

Applying Lemma 1, we obtain that

(22) ]e2wir(ek,,0+1+---+ek,,‘o+m) _ e-—27rirpmq2nk| < 46.

Now, since the number of “good” subintervals contained in 7% (1) is at least
(1 — 26)agn,+1 and (19) holds, for sufficiently small § there exist i, j; and m
such that

Skgi-1 <01 < Skj kg <81+ M < Sk it
(23) Skjr <B2 < Skji+1  Skji+1 <l2+ M < Skjito
T Jk, T Jf ., T JE, T Jf . are “good” intervals.

i1+m> i2+m

From our definition of a.a.c.c.p., (23) and {22) it follows that
(24) ICzWirdk’jl _ e21rirdk'j1+1| < 86.

Now, choose t such that |e2"#:= — ¢27ir%| < p/4 for all z € [0,1). Then, in view
of (24) we obtain that

| 2riBedesy _ 2miBidiiiti| < /2 4 85,
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By considering only k € N; we get a contradiction to (21). |

Remark 1: For other constructions of weakly mixing special flows over irrational
rotations with analytic roof functions see (7], [3] chapter 16. In subsection 3 we
will show that Katok’s method (7] cannot lead to our examples.

3. M. Herman [5] has shown that if f: R — R is an analytic function periodic
of period 1 which is not a trigonometric polynomial then there exists a residual
set of irrational numbers such that for each o from this set the diffeomorphism

(25) (621ri:c’ e2m’y) — (e2m'(:c+a), e21riye2m'f(m))

has partially continuous spectrum, more precisely he has shown that the cocycle
¢?™*f is not cohomologous to any constant. Here, using ideas from [7] we prove
the following stronger result.

THEOREM 3: Suppose that f: R — R is a C'*% § > 0 periodic function of
period 1 which is not a trigonometric polynomial. Then there exists a residual
set A of irrational numbers such that for each a € A the diffeomorphism given
by (25) has partially continuous spectrum and is coalescent.

(We recall that an automorphism is said to be coalescent if each measure-
preserving transformation commuting with it is invertible.) Since a coalescent
automorphism cannot have a weakly isomorphic factor which is not isomorphic
to it, this proves that the construction of weakly isomorphic diffeomorphisms of
the form (25) cannot be achieved over a residual set of irrational rotations by
using a fixed analytic function (and, as is well-known, cannot be achieved over a
set of full measure) and shows how the constructions using a.a.c.c.p.’s are distinct
from those obtained by Theorem 3.

In order to prove Theorem 3 we will need some auxiliary results.

LEMMA 3: Given an infinite set {g,} of natural numbers and a positive real

valued function r = r(g,,) the set

A= {a € [0,1): for infinitely many n  we have ’a - %’3 < r{qn),

n

where p, /qn are convergents of a}

is residual.
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Proof: Set S(q) = {1 < j < ¢q: ged(4,¢) = 1} and denote
Ay = U U (_ — 7(gn), — + T(Qn))
n=N j€S(an) n an
j€S(g

where 7(g,) = min(r(g,),1/2¢2). Obviously Ay is open. We will show that it is
also dense.
Forn > 1let S(n) = {t; <tz <:-- < tym)}. Denote

ln = max(|t]-+1 et tj|2j = 1, .. ,¢(n) et 1)

Then we have

(26) lim = =0.
n—oo N
Indeed, let n = pi*-...-p;*, where p; are primes and s; > 0,i =1,..., k. Put also

po = 1. Denote m,, = pop; - - - pk—1. Then lim,_, o (m, /n) = 0. Now, consider the
set N = {1,m,+1,2m, +1,...,rm, +1}, where r = n/m, —1. Note that p; can
divide only one of the numbers im, + 1, (¢ + 1}m,, + 1 and moreover no number
from p1,...,pr—1 can divide any number from N. Consequently, in N for each
pair im, + 1, (i + 1)m, + 1 one number is coprime with n. Since I,, < 2m,, (26)
follows.

Now, A = Ny-; A~ and the latter set is residual. To complete the proof it
is enough to apply the Legendre theorem: if ged(a,b) = 1 and |a — $| < 1/2b
then 7 is a convergent of a. 1

Let {a,} be a summable sequence of nonnegative numbers such that a, > 0
for infinitely many n. Denote

€n =an/(an+a2n+03n+"')-

Note that &, may go to zero (for example a, = 1/nlog®n). In the proof of
Theorem 3 we must consider sequences for which ¢, does not tend to zero, for
example a, = o(1/n!*®) as the following lemma shows.

Lemma 45 If a, = o(g(n), where g(kn) < g(k)g(n) and T332, (k) = C < oo
then {¢,} does not go to zero.

Proof: Choose ny > 1,6; > 0 so that

(27) > 6 and — < é; foralln > n,.

g(nl) g(n)
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Hence Y 1o, Gkn; < X opep9(kn1)b1 < Céig(n1) < Can,. Then choose ny > ny
and 62 > 0 to have (27) with ns instead of n;. This can be repeated infinitely
many times and for the chosen subsequence {n;} we have e,, > 1/(1+C). 1

Assume, now, that f: R — R (periodic of period 1) is in L%(S'). Denote by

f(x) - Z fneZﬂ'inx
the Fourier expansion of f. We have then f_, = f,. Now, if f € C*t6,§ > 0
then f, = o(1/n*%') for each 0 < § < 6 so directly from Lemma 4 we obtain
the following.

COROLLARY 1: Suppose that f is in C'*% 6§ > 0 and is not a trigonometric
polynomial. Then there exist a constant ¢ > 0 and an infinite increasing sequence
{gn} of natural numbers such that for each n

|fqnl > € Z | fmga -

m=1

In order to conclude we will need the following small extension of a theorem
of Katok. We include a proof as the preprint of Katok is not readily available.

THEOREM 4 (A. Katok, [7]): Let f(z) = S oo _ fne¥™" be a C114(S1),6 > 0
function with zero mean. Denote by T an irrational rotation by e**®, Assume
that for a sequence {pn/qn} of rational numbers we have

(28) ‘j.ol—flIi—>C>0

Z lfkqn[
k=1

and

Ia - Iqil' n
29 0.
(29) o

Then for each A € 8! the cocycle A\e?"*/() is not a T-coboundary.

Proof: We begin the proof with certain general remarks. Let (X, B, u) be a
probability space.
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LEMMA 5: There exists an increasing function &1(k) = 3k2/(4 — £2),0< k< 1
such that if g € L°(X,p), 0 < M = |[g]l2 £ ||9]loc < P then

p{z € X:|g(z)| = M/2} > &(M/P).
Proof: Denote p = p{z € X: |g(z)| > M/2}. We have

1/2
m=( [ o) Pdua) + [ () Pdu2))
{z: lg(=)|2M/2} {=: lg(=)|<M/2}
M2 1/2
< (P2P+ - —P))

Therefore
3(M/P)?
P= 4= (M/Py

and the lemma follows. 1
As a consequence we have the following

LEMMA 6: There exists increasing positive {3(k), 0 < k < 1 with the following
property. Suppose that {g.} C L=(X, p) with 0 < M,, = ||gnl|2 < llgalloo < Pn

and [ x gndp = 0. Assume that there exists k > 0 such that for each n

Af{—: > K.
Then
#{z: gn(x) 2 &1(K)Mn/2} > &a(r)
and

u{z: gn(x) < —62(K)Mn/2} > Ea(r).

Proof: We already know from Lemma 5 that

m{z: lgn(z)] > Mo /2} > &1(K),

so for a first case, suppose

w{z: ga(2) > Maf2} > £1(k)/2

and moreover (£;(k) < 1)

p{z: gn(z) > &1(k)M, [2} > &1(K)/2.



354 J. KWIATKOWSKI, M. LEMANCZYK AND D. RUDOLPH Isr. J. Math.

Now, if we denote ¢ = p{z: gn(z) < —€1(5)M,/2} then from the fact that g,
has zero mean we obtain

Mn &i(x)
2 2

< an+§1(n)%(1 - %f—) ~a).

Hence 9

0> rx(61(k))%/4

T 1-k&(k)/2°
which completes the proof of the lemma, the other case being precisely symmetric.
1
We now complete the proof of Theorem 4. We have
1-— eZ'mmq,l .
f(qn (z) = Z fm — s g2mime

m=—o

Put a,, = pn/qn- If, for k > 0 we denote
B(z) = f@) + flz+an) + -+ fl@ + (k= 1an)

then

fl(q")(x) =gn Z flqne21rilq,,m.

I=—o0

Denote

Mo =152y Pa=an Y lfianl 21 Nleor  do = lo = pn/anl.

l=—00

Obviously, M, < P,. Since ¢,|fq.| < M, by (28) it follows that
(30) P, <c'M,.

Thus any ratio of My, Py, and ¢,|f,,.| is bounded away from zero independant

of n.
Since f € C1,
Qn"l
3 fz+ka) - f(z + kaw)| = )| < ddnd?,
k=0 k=0

where ¢ is a constant depending on f but not on n. Now, in view of (28), (29)
and (30) it follows that the L2-norm and the uniform norm of f(%») are of the
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same order. This function has zero mean. Therefore in view of Lemma 6 it has to
have both positive and negative values of that order on sets of measure bounded
away from zero by a constant independent of n. Up to an error of order d,.g2 the
function f(9%) coincides with the function fl(q").

Let us now take K, = [eo/M,], where ¢¢ is a sufficiently small constant. If
M, — 0 this will grow with order €9/¢|f,, and otherwise is bounded. We have

Kpn—1qn—-1
fEa @)= 5" S f((m+ jgna) + ka) = Z £ (z + jgna).
j=0 k=0 3=0

Replacing in the last expression f(4) by fl(q“) we allow an error of order d,g2 K,
= 0(1). On the other hand, we have

31 f(‘Jn .'I:+_7qna =gn fl e21n]lqna627nlq,.
q’l

l=— 3=0

We want again to compare the uniform and L2-norm, this time for fl(K"q"). The
uniform norm does not exceed K, P,. The L?-norm is greater than

Kn,—1

.. 2
§ : 62"”1‘1"“

=0

By (28) and (30),for 0 < j < K, -1
|e2”ijq’2*° -1 < jqila — an| < Kng2d, = o(1).

Hence if n is large enough,

ezwijqﬁa > K,./2.

Therefore by (29) and the definition of K., the L2-norm of f\¥"%) is greater than
a certain constant which depends on f and £y and can be arbitrarily small by
a choice of £g. What is important is that the ratio of the upper estimate of the
uniform norm and the lower estimate for the L2-norm is a constant independent
of g, and €. Since the mean of (31) is zero, by Lemma 6 it reaches both positive
and negative values of order £ on sets of measure separated from zero. Taking
into account the remark about the error we conclude that the same is true for
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f(K=9») But by (29) and our choice of K, the sequence {K,q,} is a rigidity
time for T. Therefore if the cocycle €27/ is cohomologous to a constant then

1
‘/ ez"if(ann)(x)dz' —1
0

for a subsequence of { K, ¢, }. For a suitable choice of £g we obtain a contradiction.
|

Proof of Theorem 3: Without loss of generality we may assume [f = 0.
According to Corollary 1 we can choose a subsequence denoted by {g,} such
that for a certain constant ¢ > 0 and each n

oo
(32) |faul > € Z | fmgal-
m=1

Now, applying Lemma 3 with r(g.) = o(|f,.]/¢n), there exists a residual set
A C [0,1) of irrational numbers such that for each o € A there exists an infinite
subsequence of {g,} satisfying (29) in Theorem 3. Obviously, in view of (32) for
this subsequence (28) will be satisfied as well.

Let Tx = = + a be an irrational rotation, where a € A. Recall that if T, zx:s
is not coalescent then for some k € Z~{-1,0,1} and for some 8 € [0,1) the
xiF

cocycle e2™F | where

F(z)= f(z+ B) — kf(x)
is an S'-coboundary (see e.g. [10]). However F(z) = 3, o Fne®™™"*, where

Fn — (e2win[3 _ k)f'n

and since |k] > 2, the cocycle F' will satisfy the assumptions of Theorem 4 with

2wiF

the same sequence {p,/gn} as for f and a possibly smaller ¢, hence e is not

a coboundary. [ |
4. All the special flows constructed in 2. must be rigid in the sense of the
following definition.

Definition 2: A flow {S*} is said to be rigid if there exists a sequence ¢, — oo
such that S*» — Id weakly.

Obviously, if a flow is rigid it is not mixing. Let Tz = x + a be an irrational
rotation. Let f: S — R be a positive integrable function. Denote by {S*} = T/
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the special flow over T with the roof function f. In [9], it is shown that if f has
bounded variation then the corresponding special flow is not mixing. More is
true for the flows we construct since recently in [11] it has been shown that if the

Fourier coefficients of f are o(1/n) then the corresponding special flow is rigid.

5. We will construct an a.a.c.c.p. giving rise to an analytic rank-1 Anzai skew
product with mixed spectrum. We will make use of some ideas from [6].

Suppose that we are given sequences {bi}, {cx}, {ux}, {sk} of natural numbers
and that for an a.a.c.c.p. the following conditions are satisfied:

Sk | Gany+1, Uk | Sk, Uk =2vk, k2>1.

Assume that wg ; C Wg,j = J(k]._l)kaU- . -UJ]’Fle, j=1,---,agn,+1/vk. Hence
M, = azn, +1/vk. The only nonzero values dy ; of ¢ will be defined on the center
interval J¥ , in Wy ;. More precisely we put

d _ brug b
k,2q;:-t—l - ? - Y%
d, o 2 = KUk _ I
k,2q;i— Sk k
for g =1,...,a9n,+1/8% and for the remaining values of j

de; = 2 for i odd and
,J sk

CrUk .
di,;j = — for j even.
Sk

Supposing N, satisfies (20) we require that the sequences {b;}, {ck}, {ux}, {s¢}
satisfy the following condition: there exists an n > 0 such that for each integer ¢
the set

(33) N, ={k:|e

2mit Sk k omithtk - .
T — "M | > ) is infinite.

Suppose now that for an a.a.c.c.p. satisfying all the above conditions the Anzai
skew product T,2-:s has an eigenvalue A which is not of the form e2"™* m € Z.
Then (see for instance [2]) there exists a nonzero integer ¢ such that the functional
equation

e2rite(z) — ,\f’@
h(z)
has a measurable solution h: S — S. By applying arguments from the proof
that special flows in 2. were weakly mixing (notice that (19) is satisfied for our
a.a.c.c.p.) we obtain a contradiction.
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ProposITION 3: There exists an a.a.c.c.p. such that the corresponding Anzai
skew product has rank-1 and partly continuous spectrum.

Proof: We will put some more restrictions on our a.a.c.c.p. to get T.2xip has
rank-1. According to the definition of rank-1 (see [12]) it is enough to find a
sequence Ry = {Fk,...,(Tu2niv)** 1 F;} tending to the partition into points.
We recall also that rank-1 implies ergodicity.

We will additionally assume that

1 1
a B W
Qonp g1 +1 Ukq2n,
1
(35) s = o ——),
uk‘]2nk
Geter)ur _ Bx where
Sk Gr’
(36) p~k < qk, ng(ﬁk’ ijk) =1and
g — ©0.

(Notice that (35) will hold if we replace si by Gi.) Define

n _— 71k k k
By = Jl U Jur}-l U---u J"’::+1 41

Notice that the sets Bk, TBk, ey THEG2n ~1B, are pairwise disjoint, so we obtain
a sequence

Ok = {Ek, Ték, ceey Tu"qz""_lék}
of Rokhlin towers for T with heights uxgon,, k£ > 1. Since

Uegan, —1

(37) M( U Tjék) =1—‘Tk, Tk—->0
3j=0

and the diameter of each level of pj is smaller than |I;| (}Ix| goes to zero as k
goes to 00), the sequence {gx} tends to the point partition when k goes to oo.

From the definition of the R-cocycle ¢, it follows that the S'-cocycle €2
takes constant values on each level of gy except for the set

Q2n, +1G2n, —1

EB.= |J TR
i=0
Moreover .
(38) p(Ek) < G2n, +1G2n, £k+1 <

A2n441+1
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Let By ={z € Bk N Ej: T 92ni g € Bk NE,i=1,...,4x — 1}. Now, take

Fk = Bk X [0, ~l)
UL

Notice that Ey x [0,1) is disjoint from U?’:__t:)qu""_l (Tooeew)i i and that the set
Ry = {Fk, ceey (Tez,,,-w )qk‘uklhnk—le}

is a Rokhlin tower for T.z2«iv. This latter fact follows from the observation that
the product of the values of e2™ across the tower gr N ([0,1) ™ Ej) is constant
and equal to il (we use here the definition of ¢ and Lemma 1 ). The levels
of R have diameters smaller than

a 1 1 1
P +—
Uk Gk UkQ2n, Gk
and the latter number goes to zero by (36). Hence, it remains to prove that

Gevrgen, —1

pxu( U (TaweYF)—1.
j=0
We have

Getrgan, —1

(U Tearse Y Fi) = urgon, @i X p)(Fr) = agan, u(B)-
j=0

In view of (34),(35) and (37) we obtain that

u(By) > p(By) — w(Ex) — ey =

1
=)
Ukq2n,, UkQ2n,

and the result follows. |

Remark 2: In [1] Anosov and Katok construct examples of C* transformations
on any two-dimensional compact manifold. The class of examples they construct
include ones which are rigid, rank-1 and weakly mixing. If metric examples
can be constructed which are both weakly isomorphic but not isomorphic, and
are sufficiently well cyclically approximated to admit the Anosov and Katok
construction, then their method would give C* examples. As their method is
actually a construction on a disk, vanishing to all orders on the boundary of the
disk, their method cannot possibly give analytic examples.
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