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ABSTRACT 

We define here a certain class of procedures (a.a.c.c.p.) for constructing 

real valued cocycles over irrational rotations. Each such procedure is 

realizable over a residual set of possible rotations, and we prove that  each 

such cocycle is cohomologous to a real analytic cocycle. The procedure 

in Section 3 of [10] is seen to be of this type and hence not only is 

cohomologous to C °O as is shown there, but is actually cohomologous to 

a real analytic cocycle. We also show tha t  following the method of [6] a 

procedure can be given to obtain rank-1 Anzai skew products of mixed 

spectral type tha t  are real analytic. 
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Introduct ion  

In [10] the authors described a construction of two weakly isomorphic but not 

isomorphic Anzai skew products with C°°-cocycles. This construction has two 

features not directly related to the problem of weak isomorphism. First, it is 

not simply one example that  is constructed, but rather a class of examples over 

a dense G~ of admissible base rotations. As was discussed there, it is necessary 

to restrict the rotation number a to be very well approximable by rationals. 

But moreover it is sufficient, as such very good approximations, that  is to say 

large terms ak in the continued fraction expansion of a = [0: al ,  a2, . . . ]  imply 

the existence of special Rokhlin towers for T~ whose sets are intervals. The 

construction was carried out on a series of such towers. More precisely, the ability 

to carry out the construction depended simply on the existence in the continued 

fraction expansion of certain an > B(al, a 2 , . . . ,  a n - l )  for some rapidly growing 

function B of the previous terms of the expansion. 

Second, for such an a the construction occurred in two steps. In the first step 

a series of coboundaries ~k were constructed. The ~k were step functions, taking 

on constant values on the levels of a certain Rokhlin tower, and the cocycle ~ = 

~k°°_-i ~k was shown to have the desired property. In the second step one examines 

the form of the 7~k and notices that  they can be modified by coboundaries to fk 

which are smooth cocycles. This remark may seem foolish a s  of course ~k is 

cohomologous to zero. To explain this point we use the language of "fixing sets". 

Definition 1: Let (X, B, #, T) be a dynamical system and f :  X ~ R be mea- 

surable. We say that  f has an "(c, M)-fixing set" S if #(S) > 1 - c and whenever 

x, Tn(x)  e S, then 

If(n)(x)l < M, 

where f (")(x)  = f (x )  + . . .  + f ( T " - l x ) ,  n > 1. 

THEOREM i ([13]): Assume that T is ergodic. Then a measurable function f is 

a coboundary ff and only ff it has an (e, M)-flxing set for some 0 < e < 1 and 

0 < M < c ~ .  

Now in our constructions ~k is a coboundary which has an (Ek, 0)-fixing set for 

some ek, but the ek ---* 1, and in fact ~ will not be a coboundary. On the other 

hand, our smooth coboundaries fk will be such that  ~k - f k  has an (e/2 k, M/2k)- 

fixing set Sk for some 0 < e < 1 and 0 < M < oo. But then ¢¢ E =l( k - h )  
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S has an (c, M)-fixing set (Nk=l k) and is a coboundary. Our problem reduces to 

forcing f = ~k~__l fk to be smooth. 

These observations concerning the construction in [10] make it clear that the 

second part, that  of smoothing the cocycle, is only related to certain properties 

of the construction of the sequence 7~k. We here abstract these properties in the 

concept of an "almost analytic cocycle construction procedure". 

In [10] the cocycle is only smoothed to C ~ .  This left the obvious question if 

one could actually obtain real analytic examples. In the context of R+-valued co- 

cycles giving rise to weakly mixing special flows, such real-analytic constructions 

are quite old and known. We will describe such a construction as an a.a.c.c.p. 

Soon after completing [10] we realized that the necessary computations for the 

real analytic construction are possible and actually easier than C ¢¢, and so we 

work here in this context. 

It will be a simple observation that on a perhaps smaller residual set of a 's  the 

construction in [10] is an a.a.c.c.p. Hence this class of examples is real analytic. In 

Section 2 we will modify the method and computations of [6] to give an example 

of an a.a.c.c.p, that  constructs rank-1 automorphism of mixed spectral type. 

The second author would like to thank A. Iwanik and T. Downarowicz for 

fruitful discussions concerning the proof of Theorem 3. 

1. N o t a t i o n  

We will identify the circle S 1 with X = [0, 1) (mod 1). Therefore, real functions 

defined on the circle will be identified with periodic-one functions defined on R. 

Let p denote Lebesgue measure on X. Assume that  T: X -----* X is an irrationa] 

rotation, T x  = x + a (mod 1), x E X. Let 

O~ = [O;al, a2, . . . ]  

be the continued fraction expansion of a. The positive integers an are said to be 

the p a r t i a l  q u o t i e n t s  of a. Put  

qo = 1, ql = al,  q n + l  = a n + l q n ' q - q n - - 1  PO = O, Pl = 1, P n + l  = a n + l P n + P n - - 1 .  

The rationals p n / q , ~  are called the c o n v e r g e n t s  of a and the inequality 

_ Pn  < _ _  

q n q n + l  
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holds• The following formula 

q . + i l l q . a l l  + q - l lq=+xa l l  = 1 

holds true. Here [It[[ is the distance of a real number t from the set of integers• 

By {t} we denote the fractional part of t. 

Hence, from the continued fraction expansion of a we obtain, for each n, two 

Rokhlin towers ~,~, ~,~ whose union coincides with the whole circle. For n even 

~n = {[0, {qna}), T[0, {qna} ) , . . . ,  T(a"+'q"+q"- ')- l [o, {qna})} ,  

~n = {[{qn+lOZ}, 1 ) , . . . ,  Tq"-l[{qn+lOL}, 1)}. 

Given a subsequence {nk} of natural numbers we will denote 

Ik = [0, {a2n,+lq2n, O~}), Jt k = T (t-l)q2`" (0, {q2n,~}], 

t = 1 , . . . ,  a2nk+l. Notice that  

a2n/t+l 

t = l  

and if lk = [J~[ then 
1 

(1)  tk < 
a2nk+lq2nk 

We also have 

SO 

In particular, 

(2)  

1 1 
IIq~-~+la l l  < - -  < 

q2nk+l  a2n~+lq2nk 

1 1 - i/a2n~+t _< l lk]<  - - .  
q2nk q2n~ 

1 1 - -  < I/~1 < - - .  if a2n~+l > 1 then 2q2nh - q2n~ 

Let G be a locally compact abelian metric group with Haar measure m (the only 

case considered here will be G = R or S 1 with Lebesgue measure). A measurable 

function ~: Z × X  , G is called a cocyc le  if ~(n+m)(X) = ~(n)(x) '~m)(T'~(x)) .  

Any such is clearly of the form ~(n)(x) n-1 = 1-Ij=o ~(TJ(x)) ,  n >_ O, ~(~)(x) = 

(l-I~=l.~(TJ(x))) -1, n < 0, where ~v(x) = ~(1,x)  is the "generator" of the 

cocycle. Abusing language we will refer to qo as "the" cocycle although we will 
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be referring to the cocycle it generates. A cocycle ~ determines an automorphism 

Tv (called a G-extens ion  of  T) on (X × G,/~,/5) by 

T,(x, g) = (Tx, g. ~(x)), 

(/~ is the product a -algebra and/~ = # × m ). Sl-extensions will be called Anza i  

skew p r o d u c t s .  A cocycle ~ is said to be a c o b o u n d a r y  (or a G - c o b o u n d a r y  

if we need to emphasize the role of G ) if it is of the form 

~(x) = f ( T x ) / f ( x )  

for a measurable function f :  X ----* G. We say that  two cocycles ~o, ¢: X ~ G 

are cohomologous  if ~ / ¢  is a coboundary. 

2. W h a t  is an  A . A . C . C . P .  ( " a l m o s t  ana ly t i c  cocycle  c o n s t r u c t i o n  

procedure") ? 

We begin by noticing some simple facts concerning real trigonometric polynomi- 

als. Let Q(x) = v 'N h _2~i8~ where b8 = b_-~, bN ~ 0 be a real trigonometric Z - . , s = - N  v s ~  

polynomial. The number N will be called the degree  of Q. We will denote 

IIQll~= max [bsI, [IQIG-suplQ(x)l- 
- N < s < N  z E R  

Notice that IIQ(.+xo)ll  = IIQ(')ll~ for each xo E R and IIQll~ enjoys the same 

property. 

LEMMA 1: Let Qk be real trigonometric polynomials with degrees Nk, k > 1. It 

there exists A > 1 such that 

~o 

~ AN~IIQkII7 < +~ 
k=l  

then the function 

is real analytic. 

f(x) 
k=l  

Proof'. Denote 
Nk 

0 8 e 

s = - N ~  



342 J. KWIATKOWSKI, M. LEMAi~ICZYK AND D. RUDOLPH Isr. J. Math 

Then we formally write 

Z 
s=--oo k=l 

where b! k) = 0 for Isl > Ark. We have 

E~°----1 [blk)[ ---- ~{k:  N~<[s[} [blk)[ -[- ~-'~{k: N~>[s[} [blk)[ 

-- E(k:N~Zl~l} ]b!k)l--< E(k:N~ZI~I} AI--~ (ANklIQklI~) 

< A-~ ~k%1 AN~ IlQkll~. 

Therefore the Fourier coefficients of f tend to zero exponentially so f is real 

analytic. 1 

An a.a.c.c.p, is given by a collection of parameters as follows. We are given 

a sequence {Mk} of natural numbers and an array {(dk,1,. . . ,  dk,M~)}, dk,~ E R 

satisfying for each k 
M~ 

(3) 
i=l 

Denote Dk = maxl_<~_<Mk Idk#l. Choose a sequence {ek} of positive real numbers 

satisfying 
o o  

(4) E V~-kik < +oC, 
k=l 

o o  

(5) E ek < 1, 
k----1 

1 
(6) ek < ~-~k 2 , k = 1,2, . . . .  

Finally, we are given A > 1 completing the parameters of the a.a.c.c.p. 

We say that this a.a.c.c.p, is rea l ized  over  an  i r ra t iona l  n u m b e r  a with 

continued fraction expansion [0; al, a2,. . .]  if there exists a strictly increasing 

sequence {nk} of natural numbers such that 

1 (7) AN~ DkMkllPklI.r < 2 k 
a2nk +lq2nk 

and DkllP~ll~ 

(8) a2n~ +lq2n~ < V ~ ,  
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where {Pk} 
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is a sequence of "bump" real trigonometric polynomials, i.e. 

(i) f3 Pk(t)dt = 1, 
(9) (ii) Pk >_ 0, 

(iii) Pk(t) < ek for each t E (~k/2, 1), 

where the ~?k's are chosen in such a way that 

Ck 
(10) 4Mk~k < - -  

q2n~ 

and Nk is the degree of Pk. Finally, a2n~+l > 1 and 

1 1 
(11) < 

a2nk+lq2n~ 

Using the above parameters define a cocycle 

OO 

~ = E ~ P k  
k = l  

as follows. In view of (10), (11) (and (1), (2)), in the interval 

we can choose wk,1, • •. ,  Wk,M~ to be consecutive pairwise disjoint intervals of the 

same length contained between 7/k and 2~k such that each wk,i consists of, say, ek 

consecutive subintervals Jt k, where ek is an odd number. Let J~. ,  be the central 

subinterval in wk,i and now define 

f dk,i if x E J k  
~k(x) Sk , i  ~ 

L 0 otherwise. 

Note that the ~Ok'S have disjoint supports so ~ is well defined. 

Let mk,i be determined by J~.,  = Tm',' J~. 

PROPOSITION 1: The set of a's over which an a.a.c.c.p, is realized is a G6 and 

dense subset of the circle. 

Proo~ In constructing ~k we use only information relating parameters 

[0; h i , . . . ,  a2~],  Mk, Dk, ek. 

Now, the set {Mk, ek, q2~ } determines an upper bound for our choice of ~?k which 

in turn determines our choice of Pk which finally determines a lower bound for 
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aa,~s+l to satisfy (7)-(9) and (11). We can then choose an arbitrary nk+t and 

put arbitrarily a2,~s+2,...,  a2n~+l. Therefore density follows directly from the fact 

that nl can be chosen arbitrarily and G6 from the fact that for each k > 1 the 

set of a's satisfying (7)-(9) and (11) is open. | 

THEOREM 2: Suppose that / 'or  an irrational a an a.a.c.c.p, is realized. Then 

there exists an analytic cocycle f:  S 1 ~ R which is a-cohomologous to ~. 

Proo~ Denote 
Ms 

[~k(t) = Ik E d~,~Pk(t - mk.~a). 
r = l  

We are going to prove that the real function 

(12) f ( t )  = E /Sk( t )  is analytic 
k=l  

and is cohomologous to ~o. First notice that 

IlPklb- _< lkDkMkllPkll~'. 

Moreover the degree of Pk is not bigger than the degree of Pk. Therefore, by 

Lemma 1 (with Qk =/Sk), (7) and (1) it follows that (12) holds true. To show f 

and ~ cohomologous put 

Now, 

M s q2,~s-1 

U 

Mk: q2ns--1 

#(Sk) = 1 - # ( U  U TiWk'r) ~- 1 -- 4ik~?kq2ns >__ 1 -- ek 
r = l  i=0 

in view of (10). So, from Theorem 1, (4) and (5) it follows that it is enough to 

show that 

(13) if x, T N x  E Sk then I(~pk - Pk)(g)(x) l  <_ 12Mkv~. 

Denote gk = ~k --[~k, hk,j = x j ~ T  -ms'~ - l k P k T  -ms'~ • We will estimate the sum 

lak(x) + gk(Tx) + . . .  + ak(TN-lx)l 



Vol. 87, 1994 CLASS OF REAL COCYCLES 345 

by 4Mk sub-sums of the form 

L j - 1  

i=O 

where 

(14) 0 <_ Lj < a2nk+lq2n~, 

neither y nor TL~-ly are in the set 

I Iq2nk--1 "t~i... (15) Sk,j Ui=0 s wk,j 

and moreover if il  and i2 are the smallest positive integers such that  y E T il J~ 
and TL~-ly E T i2 J~ then 

(16) 

Indeed, in our notation 

il < i2. 

Mk 

gk =Edk , jhk , j .  
5=1 

Since (3) holds and hk j  = hk o T-m~.~, where hk = Xj~ - lkPk, we have 

Mk N - 1  

g(N)(x) = E E dks-hkT-m"~(x + ia) 
j = l  i=0 

Mk ink,j--ink,l--1 

z 
5=1 i=0 

dkshk,j(x + ia) 

N--1 

E + + 
i=(N--1)--(mk,M~ --mu,j)  

Now, Sk,j = T'~k'~-m~'lSk,1 and therefore for the sum Ij we have (14) and (15) 

with Lj = mk5 - mk,1, Y = x. Similarly, for appropriate Lj and y we have (14) 

and (15) for the sum IIj, j = 1,. . . ,  Mk. However, it is not excluded that  the set 

{y, . . . ,  TLj-ly} is not entirely contained in ~2nk. If this happens then no more 

than q2n~-x + q2~ consecutive points from this set are outside ~2~. Hence by 

dividing each sum Ij (IIj) into no more than two sums we get that  Ig(/V)(x)l can 

be estimated by the sum of absolute values of no more than 4Mk sums each of 

which satisfies (14), (15) and (16). 
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Let us take a sum of the form 

N - 1  

E dk,jhk,j(x + is), 
i----0 

where x, Tg-l(x) are not in Sk,j and (16) is satisfied. We divide this sum into 

three sums E~, r = 1, 2, 3, where the first sum is from 0 to N1, where N1 is the 

smallest number such that  TN~+I(x) is in Sk,j, if it exists, the second from N1 + 1 

to N2, where N2 is the biggest (but smaller than N) number such that  T N2 (x) 
is in Sk,j and finally the third one from N2 + 1 to N - 1. If N1 does not exist 

neither does 2/2 and the sum is just El.  Now, since PkT-m~,~ is smaller than ek 

outside Sk,j, 

<lr, ll + Ir 31 
NI N1 

= Zdk,jxj~T-mJ,k(x + is) - EdkdlkPkT-m~'~(x + is) 
i=0  i----0 

N - 1  

+ E dk,JXJ~ T- 'b ' k (x+ia l -  
i=N2+l 

NI 

= E dk'jlkPkT-mJ'~ (X + ia)] + I 
i=0  i = N 2 + l  

<Dklka2n~+lq2nkek < Dkek < V '~  by (6). 

Finally 

N2 

It.l= Z 

N - I  

i=N2 + 1 

N - 1  

E dkd lkPkT-'b'~(x + is) 

t% 
dkjxj~T-'b,~(x + ia) - E dkjlkPkT-m~'~(x + ia) 1 

i=N1 -{-I i=N1 -{-I 

N2 
=]dk,j" i - -  ~ d~,jlkar-m','(x +is) 

i=NI-{-1 

N2 1 

= E dkdlkPkT-m~"(x+ia)-dkJ~o Pk(t)dt[ 
i=N1 + 1 

<- }2 + is) - p (t/etl + I 
i----N1 +1 k j  ,1) ~- S./,~ 

<_DkHP~ll~Ik + Dkek < 2V~ 

in view of (6) and (8). We conclude that (13) holds true, so the proof is complete. 

| 
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3. C o m m e n t s  a n d  a p p l i c a t i o n s  

1. First notice that  the method in Section 3 of [10] for constructing Anzai 

skew products that  are weakly isomorphic but not isomorphic are realized as an 

a.a.c.c.p. Therefore not only a C°~-construction as in [10] but an analytic example 

of two diffeomorphisms (preserving Lebesgue measure on the two dimensional 

torus) which are weakly isomorphic but not isomorphic can be carried out. Notice 

also that  in [10], a C°°-coboundary modification was possible only for an infinite 

sums of step cocycles which were uniformly bounded. Our new method omits 

this difficulty and can be applied to unbounded cocycles. 

By a simple trick on the 4-dimensional torus we can obtain positive entropy 

analytic examples of weakly isomorphic transformations that  are not isomorphic. 

Indeed, let T1, T2 be two zero entropy analytic diffeomorphisms on the 2-torus 

that  are weakly isomorphic but not isomorphic. Let S be an ergodic continuous 

group automorphism on the 2-torus. Then measure-theoretically S is Bernoulli. 

Obviously, T1 x S and T2 x S are weakly isomorphic. They cannot be isomorphic 

however since Ti is the Pinsker algebra of T~ × S, i = 1, 2. This example would 

be much more interesting if the systems were K.  Our method seems incapable 

of giving even mixing examples. 

We recall that  on the 2-dimensional torus all positive entropy smooth auto- 

morphisms that  are weakly isomorphic are in fact isomorphic. 

2. Suppose that  for certain parameters  {Mk}, {ek}, A and {(dk,l , . . . ,dk,M~)}, 

EM~ dk~ = 0 we have an irrational number a over which this a.a.c.c.p, is i----1 , 

realized. This means that  the cocycle qo is cohomologous to f which is analytic. 

Choose an integer p such that  if we denote • -- ~ + p, F = f + p then F > 0. 

Consider now the special flow over the irrational rotation by a with the roof 

function F. Such a flow is weakly mixing iff for no real number r ~ 0 can we 

solve the functional equation 

(17) exp(2~rirF(x)) = cr(Tx)/c~(x) ,  

where cr: 81 ~ S 1 is measurable ([7]). Of course, if in (17) we replace F by 

we obtain exactly the same functional equations to consider. 

PROPOSITION 2: There exists an a.a.c.c.p, and an a over which it  is realized so 

that the special flow over rotation by a with the roof function F is weakly mixing. 
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Hence there exists a special flow over an irrational rotation with an analytic roof 

function which is weakly mixing. 

In order to prove this proposition we will need a lemma whose proof appeared 

in [10] (see Lemma 3 in [10]). 

LEMMA 2: For an arbitrary a.a.c.c.p, and a over which it  is realized and for any 

k, the cocycle ~ is constant on each interval T i (  Ik ), i = 1 , . . . ,  q2n~ - 1. Moreover, 

i f  we pu t  bk,i = qa I T i ( I k )  then 

q2 ,~ k - - 1  

Z bkj = O. 
i=1 

Proof  of  Proposit ion 2: According to the definition of an a.a.c.c.p. 

qo [ J~ = ek,i, i = 1 , . . . , a2 ,~+1,  

where for i = sk,j, j = 1 , . . . ,  Mk, we have ek,i = dk,j and zero for the remaining 

values of i. 

In view of the above remarks all we need to show is that  the functional equation 

(18) exp(21rir~o(x) ) = e x p ( - 2 r i p r ) c r ( T x ) / c ~ ( x )  

has no measurable solution cr: S 1 ~ S 1 for any r E R \ { 0 }  if the sequence 

of parameters { (dk,1, . . . ,  dk,Mh ) } satisfies some additional properties. Below, we 

will indicate one of a variety of such possibilities. 

Select the intervals wk,1 , . . .  ,Wk,M~ to be pairwlse disjoint and moreover so 

that  there exists 0 > 0 with 

0 
(19) sk,i+l - sk,i _> ~ a 2 n ~ + l ,  i = 0 , . . . , M k ,  

where sk,0 = 1, Sk,Mh+l = a2.k+l. Parti t ion N into 

oo 

(s0) N = U Nt where each Nt  is infinite. 
t-----1 

Let Q = {/~t: t = 1 ,2 , . . . }  be the set of all rationals. Select {(dkj , . . . ,dk ,M~)} 

so that  there exists an 0 > 0 with 

(21) 
t for each k E Nt and j = 1,...,Mk - I for all t. 
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Suppose now that there exists r # 0 such that (18) can be solved. Take a 

positive number 6 < y/16. In view of the measurability of c~, there exists ko such 

that for all k _> ko, there exist at least (1 - 6)q2n ~ "good" intervals of the form 

TiIk, i = 1 , . . . ,  q2,~k - 1 on which the values of function c~ are contained in a 

ball of radius 5 except for a subset of measure I~l '  Hence, there must exist an i0 

such that for at least (1 - 26)a2~+1 "good" intervals of ~k contained in T i° (Ik) 

the values of function c~ are within 26 from a common value, say a, except for 

5/[ J~ [ of the mass of each such interval. Let A = Ti°J~o denote a "good" 

interval. Consider an arbitrary "good" interval which is on the right of A. It is 

of the form T m q ~  A, for some ra. 

From the above and (18), we can find an x ~ A satisfying the following: 

and 

b~(x) - al < 25, 

(e27riv~) (mq2=~)(x) ---- e -21rirpmq2,'k cr(Tmq2'~ ~) 
e,(x) 

(actually the set of such points have positive measure). Consequently 

I(e2~i~)(mq2~)(x) - e-2~i~Pmq2~ I < 46. 

Applying Lemma 1, we obtain that 

(22) I e2~i~(~''°+l+'''+~k'~°+~) - -  e-2~irpmq2"k I < 45. 

Now, since the number of "good" subintervals contained in T ~° (Ik) is at least 

(1- 25)a2,k+l and (19) holds, for sufficiently small 5 there exist i l , j l  and m 

such that 

sk,jl-1 ( il ( sk,jl sk,jl ( il + rn < sk,jl+l 
(23) sk,jl < i2 < sk,j~+l Sk,jl+l < i2 + m ( Sk,jl+2 

T'° J~ , Ti° J~ +m, Ti° J~2' Ti° J~2+m are "good" intervals. 

From our definition of a.a.c.c.p., (23) and (22) it follows that  

(24) ]e2~ird~.J~ -- e2~rd~'~+~ I < 85. 

Now, choose t such that ]e 2~z'x - e2~i*~ I < ~/4 for all x E [0, 1). Then, in vie~ 

of (24) we obtain that 

le2~td~,~l - e2~td~,~+l  I < 7;/2 + 85. 
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By considering only k E Nt we get a contradiction to (21). | 

Remark 1: For other constructions of weakly mixing special flows over irrational 

rotations with analytic roof functions see [7], [3] chapter 16. In subsection 3 we 

will show that  Katok's method [7] cannot lead to our examples. 

3. M. Herman [5] has shown that  if f :  R ----* R is an analytic function periodic 

of period 1 which is not a trigonometric polynomial then there exists a residual 

set of irrational numbers such that  for each a from this set the diffeomorphism 

(25) (e 2~i~, e 21riy) H (e 2~ri(x+~) , e2~riYe 2~i$(x)) 

has partially continuous spectrum, more precisely he has Shown that  the cocycle 

e 2Èq is not cohomologous to any constant. Here, using ideas from [7] we prove 

the following stronger result. 

THEOREM 3: Suppose that f: R ----* l:t is a C 1+~, ~ > 0 periodic function of 

period 1 which is not a trigonometric polynomial. Then there exists a residual 

set A of irrational numbers such that for each a E A the diffeomorphism given 

by (25) has partially continuous spectrum and is coalescent. 

(We recall that  an automorphism is said to be coalescent if each measure- 

preserving transformation commuting with it is invertible.) Since a coalescent 

automorphism cannot have a weakly isomorphic factor which is not isomorphic 

to it, this proves that  the construction of weakly isomorphic diffeomorphisms of 

the form (25) cannot be achieved over a residual set of irrational rotations by 

using a fixed analytic function (and, as is well-known, cannot be achieved over a 

set of full measure) and shows how the constructions using a.a.c.c.p.'s are distinct 

from those obtained by Theorem 3. 

In order to prove Theorem 3 we will need some auxiliary results. 

LEMMA 3: Given an infinite set {q~} of natural numbers and a positive real 

valued function r = r(qn) the set 

A =  t ( a  E [0, l): for infinitely many n we have a - P---~ ] < r(qn), 
qn 

where p~/q~ are convergents of a } 

is residual 
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P r o o f  Set S(q) = {1 _< j < q: gcd(j ,q) = 1} and denote 

n=N jES(q,~) 

where ~(q,~) = min(r(qn), 1/2q2). Obviously `4~ is open. We will show that  it is 

also dense. 

For n > 1 let S(n)  = {tl < t2 < . . .  < to(n)}. Denote 

In = max(I t j+l  - - t j l :  j = 1 , . . . ,  ¢ ( n ) -  1). 

Then we have 

(26) lim --In = 0. 
, ~  n 

Indeed, let n = p~l . . . . . p ~ ,  where pi are primes and si > 0, i = 1 . . . .  , k. Put  also 

P0 = 1. Denote mn = PoP1 "" "Pk-1. Then lin~__.oo(mn/n) = O. Now, consider the 

set Af = {1, mn + 1, 2ran + 1 , . . . ,  r m n  + 1}, where r = n / m n  - 1. Note that  Pk can 

divide only one of the numbers imn  + 1, (i + 1)m~ + 1 and moreover no number 

from P l , . - .  ,Pk-1 can divide any number from H .  Consequently, in A/" for each 

pair imn  + 1, (i + 1)ran + 1 one number is coprime with n. Since In < 2m,~, (26) 

follows. 

Now, ,4 = nN°°__l -AN and the latter set is residual. To complete the proof it 

is enough to apply the Legendre theorem: if gcd(a, b) = 1 and [ a -  2[ < 1/2b2 

a is a convergent of a.  | then 

Let {an } be a summable sequence of nonnegative numbers such that  an > 0 

for infinitely many n. Denote 

en = an / (an  + a2n + a3,~ + ' " ) .  

Note that  en may go to zero (for example a,~ = 1In  log 2 n). In the proof ot 

Theorem 3 we must consider sequences for which e,~ does not tend to zero, for 

example an = o(1/n  1+~) as the following lemma shows. 

LEMMA 4: I f  an = o(g(n)) ,  where g(kn)  <_ g(k)g(n)  and ~-~k~=l g(k)  = C < co 

then {en} does not  go to zero. 

P r o o f  

(27) an, 
9(nl) 

Choose n l  ~ 1, 51 > 0 so tha t  

an 
>51 and ~ _ < 5 1  for a l l n > n l .  

g[nJ 
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Hence ~-~k=2 aknl <_ ~-~k=2 g(kn1)61 < C61g(nl) < Can1. Then choose n2 > nl  

and 62 > 0 to have (27) with n2 instead of hi.  This can be repeated infinitely 

many times and for the chosen subsequence {nk} we have e,~ k >_ 1/(1 + C). | 

Assume, now, that f :  l:t , R (periodic of period 1) is in L2(Sl). Denote by 

f ( x )  = ~ fne 2~inx 

the Fourier expansion of f .  We have then f_~  = f-~. Now, if f E C 1+~, 6 > 0 

then fn = o(1/n 1+~') for each 0 < 6' < 6 so directly from Lemma 4 we obtain 

the following. 

COROLLARY 1: Suppose that f is in C 1+~, 6 > 0 and is not a trigonometric 

polynomial. Then there exist a constant c > 0 and an infinite increasing sequence 

{q,~} of natural numbers such that for each n 

o o  

Ifq. I> c Ifmq. I. 
m = l  

In order to conclude we will need the following small extension of a theorem 

of Katok. We include a proof as the preprint of Katok is not readily available. 

THEOREM 4 (A. Katok, [7]): Let f ( x )  = ~n°°=_o~ fne 2~in~ be a C1+~(Sl),6 > 0 

function with zero mean. Denote by T an irrational rotation by e 2~i~. Assume 

that for a sequence {pn/q~} of rational numbers we have 

(28) oo[fq~ I > c > o 

k=l  

and 

I n -  ~ qn , O. 
(29) IA [ 

Then for each A E S t the cocycle ,~e 27rif(') iS not a T-coboundary. 

Proof." We begin the proof with certain general remarks. Let (X, B,/z) be a 

probability space. 
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LEMMA 5: 

such that if  g E L°°(X,#), 0 < U = [[g[[2 < [[g[[oo < P then 

#{x E X: ]g(x)] > M/2} > ~I(M/P). 

Proof: Denote p = #{x E X: [g(x)[ > M/2}. We have 

M =(  /{ ,g(x)12d#(x) + /{ 
x: [g(x)[>_M/2} x: [ g ( x ) [ < M / 2 }  

_ < ( p 2 p +  -~--(1 M2 - p))1/2 

Therefore 

and the lemma follows. 

CLASS OF REAL COCYCLES 353 

There exists an increasing [unction ~1(~) = 3t¢2/(4 - a2), 0 < t~ < 1 

3(M/P)  2 p> 
4 - (M/P)  2 

| 

As a consequence we have the following 

\ 1/2 
Ig(x)l 

#{x: gn(x) <<_ -~l(tC)M,~/2} > ~2(a). 

Proof'. We already know from Lemma 5 that 

#{x: Ign(x)[ > M. /2}  > ~1(t¢), 

so for a first case, suppose 

#{x: gn(x) >_ M. /2 }  > ~l(K;)/2 

and moreover (~1(!¢) _< 1) 

~{x: gn(x) >_ ~lO¢)Mn/2} :> ~i(I¢)/2. 

and 

Mn > g .  
i n -  

#{x: gn(x) > ~l(a)Mn/2} > ~2(g) 

Then 

LEMMA 6: There exists increasing positive ~2(a), 0 < g < 1 with the following 

property. Suppose that {g,~} C L ~ ( X , # )  with 0 < Mn = IIg-112 _< IIg.ll~ <- P~ 
and f x  gnd# = O. Assume that there exists a > 0 such that for each n 
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Now, if we denote q = #{x: gn(x) <_ -~l(a)Mn/2} then from the fact that g. 

has zero mean we obtain 

Mn~l(g) < pnq+~l( t¢)_~(  1 ~1(/~) ) 
2 2 - 2 q "  

Hence 
q >__ t¢(~l(t¢))2/4 

1 - tC~l(t¢)/2' 

which completes the proof of the lemma, the other case being precisely symmetric. 

We now complete the proof of Theorem 4. We have 

f(q")(x) ~ 1 - e 2~rimq'a 
= fm i'---e2-~-~--:m ~ e 2"imx. 

m ~ - - o o  

Put  a,~ = Pn/q,~. If, for k > 0 we denote 

I~k)(x) = I (z )  + I ( z  + ~.) +. .-  + Y(x + (k - 1 )~ . )  

then 

Denote 

Mn = IIf~q")ll2, 

t 21rilq,~z f~q")(x) = q= jzq. e • 
l~---~ 

Pn = q~ ~ Iflq=l >- llf~q")IIoo, d. = la - pn/qnl. 
| - ~ - - ~  

Obviously, M,~ _< Pn. Since q,~[fq.[ < Mn, by (28) it follows that  

(30) P,, ~_ c-lMn. 

Thus any ratio of Mn, Pn, and qnlfq,, I is bounded away from zero independant 

of n. 

Since f G C 1, 

q,~--i q~--I 
gd _2 I E :(. ÷ ~o)- :(~ ÷ ~.) --1 E :'(~,)(~° ~oo) ~- -., 

k----O k = O  

where c' is a constant depending on f but  not on n. Now, in view of  (28), (29) 

and (30) it follows that  the L2-norm and the uniform norm of f(q") are of the 
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same order. This function has zero mean. Therefore in view of Lemma 6 it has to 

have both positive and negative values of that order on sets of measure bounded 

d 2 away from zero by a constant independent of n. Up to an error of order ~qn the 

function f(q'~) coincides with the function f~q'~). 
Let us now take Kn = [eo/Mn], where eo is a sufficiently small constant. It 

Mn --* 0 this will grow with order eo /qn l fq ,~  and otherwise is bounded. We have 

K , ~ - I  q ,~-I  K , , - 1  

f(K'~q")(x) = Z Z f((x + jqnc~l + ka) = Z f(q")(x + jqnc~). 
j=O k=0 j=O 

Replacing in the last expression f(q") by f~q") we allow an error of order d,~q2K,~ 
= o(1). On the other hand, we have 

K , , - 1  c¢ K , , - 1  

(31) Z flq')(x -{- Jqnc~)= qn Z flq. Z e21rijlq:ae21rilq'~z" 
j=0 l=-o¢ j=0 

We want again to compare the uniform and L2-norm, this time for f~K,.q.). The 

uniform norm does not exceed KnP,. The L2-norm is greater than 

K , ~ - I  

qn fq,, Z e2~rijq~a " 
j=O 

By (28) and (30), for 0 < j < Kn - 1 

le 21rljq2a -- 11 < jq2]a - a,~ I < K,~q2d,~ = 0(1). 

Hence if n is large enough, 

go -- 1 
Z e21rijq~a ~> gn/2" 
j--O 

Therefore by (29) and the definition of Kn the L2-norm of f~K.q.) is greater than 

a certain constant which depends on f and e0 and can be arbitrarily small by 

a choice of eo. What is important is that the ratio of the upper estimate of the 

uniform norm and the lower estimate for the L2-norm is a constant independent 

of qn and to. Since the mean of (31) is zero, by Lemma 6 it reaches both positive 

and negative values of order e0 on sets of measure separated from zero. Taking 

into account the remark about the error we conclude that the same is true for 
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f(g=q=). But by (29) and our choice of K=, the sequence {Knq,~} is a rigidity 

time for T. Therefore if the cocycle e 2~i$ is cohomologous to a constant then 

~0 1 (x)dx  , e21ri f (  Kn qn ) 1 

for a subsequence of {Knqn }. For a suitable choice of ~0 we obtain a contradiction. 

| 

Proof  of  Theorem 3: Without loss of generality we may assume f f = 0. 

According to Corollary 1 we can choose a subsequence denoted by {qn} such 

that for a certain constant c > 0 and each n 

(32) Ifq,, I > c ~ ]fmq,~ [. 
m ~ l  

Now, applying Lemma 3 with r(qn) = o(lYq=l/qn), there exists a residual set 

A c [0, 1) of irrational numbers such that  for each a ~ A there exists an infinite 

subsequence of {qn} satisfying (29) in Theorem 3. Obviously, in view of (32) for 

this subsequence (28) will be satisfied as well. 

Let T x  = x + ~ be an irrational rotation, where (~ E A. Recall that if T~2,,I 

is not coalescent then for some k E Z \ { - 1 ,  0, 1} and for some f~ E [0, 1) the 

cocyc le  e2~iF~ where 

F(x) = f(x + j3) - kf(x) 

is an Sl-coboundary (see e.g. [10]). However F(x) = ~,,#o Fne2"inx, where 

Fn = (e 2"in~ - k) fn  

and since lkl >_ 2, the cocycle F will satisfy the assumptions of Theorem 4 with 

the same sequence {p,~/qn} as for f and a possibly smaller c, hence e 2~riF is not 

a coboundary. | 

4. All the special flows constructed in 2. must be rigid in the sense of the 

following definition. 

De/inition 2: A flow {S t } is said to be r igid if there exists a sequence tn ~ oo 

such that  S t~ ~ Id  weakly. 

Obviously, if a flow is rigid it is not mixing. Let T x  = x + a be an irrational 

rotation. Let f :  S 1 -----* R be a positive integrable function. Denote by { S  t } = T I 
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the special flow over T with the roof function f .  In [9], it is shown that  if f has 

bounded variation then the corresponding special flow is not mixing. More is 

true for the flows we construct since recently in [11] it has been shown that  if the 

Fourier coefficients of f are o(1/n) then the corresponding special flow is rigid. 

5. We will construct an a.a.c.c.p, giving rise to an analytic rank-1 Anzai skew 

product with mixed spectrum. We will make use of some ideas from [6]. 

Suppose that  we are given sequences {bk}, {ck}, (uk}, {sk} of natural numbers 

and that for an a.a.c.c.p, the following conditions are satisfied: 

8k [ a2nk+l ,  Uk I sk, uk : 2vk, k > 1. 

Assume that  wk,j C wk,j = J~_l)vk+l U'" "UJ~vk+l, j : 1, . . . ,a2n~+l/Vk. Hence 

Mk = ag.,~k+l/vk. The only nonzero values dkd of ~k will be defined on the center 

interval j k  in ~k,j- More precisely we put 

bkUk 
d ~,_,. 1 -  bk, 

k,~q ~ k - 8k 

CkUk 
- -  Ck d k , 2 q ~  Sk 

for q = 1 , . . . ,  a2,~+l/Sk and for the remaining values of j 

bkuk 
dk5 -- for j odd and 

8k 

CkUk 
dkd - for j even. 

8k 

Supposing Nt satisfies (20) we require that  the sequences {bk}, (ck}, (uk}, {sk} 

satisfy the following condition: there exists an y > 0 such that  for each integer t 

the set 
(33) Nt {k: 2~r~t ~-~'~ e2~t~'-~k] = e ok - _> 7} is infinite. 

Suppose now that  for an a.a.c.c.p, satisfying all the above conditions the Anzai 

skew product Te2,~ has an eigenvalue ~ which is not of the form e 2~i'~a, m E Z. 

Then (see for instance [2]) there exists a nonzero integer t such that  the functional 

equation 
e 2=it~°(z) = A h(Tx)  

h(x) 

has a measurable solution h: S 1 , S 1. By applying arguments from the proof 

that  special flows in 2. were weakly mixing (notice that  (19) is satisfied for our 

a.a.c.c.p.) we obtain a contradiction. 
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PROPOSITION 3: There exists an a.a.c.c.p, such that the corresponding Anzai 

skew product has rank-1 and partly continuous spectrum. 

Proof." We will put some more restrictions on our a.a.c.c.p, to get T~2.~ has 

rank-1. According to the definition of rank-1 (see [12]) it is enough to find a 

sequence T~k = {Fk , . . . ,  (T~2.,~)h~-lFk} tending to the partition into points. 

We recall also that  rank-1 implies ergodicity. 

We will additionally assume that 

(34) 1 _ o ( ~ ] ,  
a2nk+l+l \ U k q 2 n k  ] 

(35) l sk = o( 

{ (b~+ek)~ = q-P~'k' where 
Sk 

(36) iSk < qk, gcd(/5~, qk) = 1 and 
qk  - - - - * 0 0 .  

(Notice that  (35) will hold if we replace sk by qk-) Define 

k /~k -- J1 k U J~k+l U ' "  U J-k2.~+x +1" 
uk 

Notice that  the sets Bk, T B k , . . . ,  T "kq2"k -1/~k are pairwise disjoint, so we obtain 

a sequence 

Qk = {/~k, T/}k , . . . ,  T "kq2"k-1/~k} 

of Rokhlin towers for T with heights ukq~n~, k >_ 1. Since 

ukq2,, k - - I  

j=0 

and the diameter of each level of Ok is smaller than Ilk[ (]I}] goes to zero as k 

goes to c~), the sequence {t~}} tends to the point partition when k goes to c~. 

From the definition of the R-cocycle ~o, it follows that  the Sl-cocycle e 2~i~ 

takes constant values on each level of ~k except for the set 

a2nk4.1qzn k -1 

Ek = U TJ Jkl + l" 
j=o 

Moreover 

(38) p(Ek) < a2.~+lq2.~Ik+1 < 
a2nk+1+l 
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Let Bk = {x E Bk \ E~: T~'kq2"~x E/~k \ Ek, i = 1 , . . .  , ~  - 1}. Now, take 

F~ = Bk × [0, 1 )  

I 14~kq2~k-l(T~2.,~)JFk and that  the set Notice that  E~ × [0, 1) is disjoint from uj=o 

is a Rokhlin tower for Te2.~. This latter fact follows from the observation that  

the product of the values of e 2~i~ across the tower Qk N ([0, 1) \ E~) is constant 

and equal to e q~ (we use here the definition of ~ and Lemma 1 ). The levels 

of T~k have diameters smaller than 

I a2n~+l 1 1 1 
k + = - < - - + = -  

Uk qk ukq2nk qk 

and the latter number goes to zero by (36). Hence, i t  remains to prove that  

~ u & q2,~ ~, - 1  

× U ---, 1. 
j = 0  

We have 

~ k ~ k q 2 ~  k - -1  

P( U (T~2-,,lJFk) = ukq2n, O~(# x p)(Fk) = ukq2n~p(Bk). 
j = 0  

In view of (34),(35) and (37) we obtain that  

~ k q 2 n k  

and the result follows. | 

Remark  2: In [1] Anosov and Katok construct examples of C ~ transformations 

on any two-dimensional compact manifold. The class of examples they construct 

include ones which are rigid, rank-1 and weakly mixing. If metric examples 

can be constructed which are both weakly isomorphic but not isomorphic, and 

are sufficiently well cyclically approximated to admit the Anosov and Katok 

construction, then their method would give C c¢ examples. As their method is 

actually a construction on a disk, vanishing to all orders on the boundary of the 

disk, their method cannot possibly give analytic examples. 
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